SPARK Ver 2.4

半導体パラメータ解析アプリケーションソフトウェア

パッケージ構成

Ppackage(パラメトリック測定パッケージ)

4062や4070シリーズと同等の測定機能やユーザイン ターフェイスを持ち、高速で大量パラメータの取得ができ ますので、製造ラインでの特性測定、評価、判定を自動 で行うことができます。高速大量パラメータの自動測定 に最適で主にラインでの使用に適しています。

<u>Cpackage</u> (特性評価パッケージ)

I-V測定、C-V測定等SWEEP測定を、連続して自動 的に行うことができます。取得したスイープデータからの パラメータ取得も行えます。少数詳細データ/パラメータ 測定に適しています。

Fpackage(膜評価パッケージ)

4294Aの使用を前提とした容量測定を行うことができま す。C-V測定、Z-F測定等の測定を連続して自動的に 行うことができます。

Rpackage(信頼性評価パッケージ)

TDDB, TZDB, ホットキャリア等の信頼性評価測定を 自動的に行うことができます。

TOA TECHNO

4062や4070シリーズと同等の測定機能やユーザインターフェイス を持ち、製造ラインでの特性測定、評価、判定を自動で行うことができ ます。

ー般的な測定アルゴリズムは標準機能として組み込まれており、プロ グラムソースも公開しておりますので、お客様独自のアルゴリズムの 組み込みも可能です。

サマリ表示やマップ表示等一般的なデータ解析機能が組み込まれて おり、測定データをその場で解析できますし、データファイルはCSV形 式で出力しますのでEXCEL等のWindowsアプリケーションでの解析 も可能です。

また、オフラインオプションを追加していただくことで、測定コントローラ とは別のPCで、測定中でもストレスなくテストプラン、プロービングパ ターンの作成や、データ解析を行うことができます。オフラインオプショ ンでは、SPARKの測定器に関わる機能以外の機能はすべて使用で きます。

測定アルゴリズム

Ppackage

🖌 Algorithm List	×	SPARK内に測定アルゴリズムを最大1000種まで登録することが できます。				
No. Algorithum Name 1 20255 2 8V/059 2 8V/059 4 8V/050 5 8V/050 6 V/04 7 704 9 105 9 105	Agentitian Comment Spinist Biostical Brainfordian Moltage (Source Solar Biorit Circuited) Image: Source Solar Biostical Biorit Circuited) Spinist Biostical Brainfordian Comments Image: Source Comments Image: Source Comments Grain Ib Source Brainfordian Comments Image: Source Comments Image: Source Comments Grain Ib Source Brainfordian Comments Image: Source Comments Image: Source Comments Grain Ib Drain Breakdown Voltage [Source Comments] Image: Source Comments Image: Source Comments Grain Ib Drain Breakdown Voltage [Source Comments] Image: Source Comments Image: Source Comments Grain Lask Current [Source-Comments Image: Source Comments Image: Source Comments Image: Source Comments Source Lask Corrent [Source-Comments Image: Source Comments Image: Source Comments Image: Source Comments Source Lask Corrent [Source-Comments Image: Source Comments Image: Source Comments Image: Source Comments Source Lask Corrent [Source-Comments Image: Source Comments Image: Source Comments Image: Source Comments Source Lask Corrent [Source-Comments Image: Source Comments Image: Source Comments Image: Source Comments Source Lask Corrent [Source-Comments Image	測定アルゴリズムのプログラムソースは公開しており、お客様での追加、改造が可能です。 1つのアルゴリズムで、標準の戻り値以外に5種のデータを戻すこと				
11 Vh0 12 Vh1 13 Vh2 14 Vh2 15 Vh3 16 Vh4 17 Vh6 19 00 20 Isub_max 21 Isub_max 22 Isot_sgl 23 Isot_mt	Threshold Vottage 0 (Sub-threshold Characteristics) Image: Characteristics (Characteristics) Threshold Vottage 1 (Sub-trans Resign Oran-Cases Stord Circuited) Image: Characteristics (Characteristics) Threshold Vottage 1 (Sub-trans Resign Oran-Cases Stord Circuited) Image: Characteristics (Characteristics) Threshold Vottage 3 (Linear Estrapolation) Image: Characteristics (Characteristics) Threshold Vottage 4 (Lineg Cases American Characteristics) Image: Characteristic) Sub-Threshold Vottage 4 (Lineg Cases American Characteristics) Image: Characteristic) Sub-Threshold Vottage 4 (Lineg Cases American Characteristics) Image: Characteristic) Sub-Threshold Vottage 4 (Lineg Cases American Characteristics) Image: Characteristic) Sub-Threshold Vottage 4 (Lineg Cases American Characteristics) Image: Characteristic) Sub-Threshold Vottage 4 (Lineg Cases American Characteristics) Image: Characteristic) Sub-Threshold Vottage 4 (Lineg Cases American Characteristics) Image: Characteristic) Maximum Volume 1 (Sabe Bias Single) Image: Characteristic) Characteristic)	ができます。 この画面から動作確認のための測定を行うこともできますので、アル ゴリズムの動作確認もできます。				
23 は 23 は 33 は 33 は 33 は 33 IVCEO 30 IVCEO 30 IVCEO 30 IVCEO	By every mer your of a large of the large of	<complex-block></complex-block>				

標準組み込みアルゴリズム

FET

BVDSS	ドレイン・ソース間降伏電圧 [ソース・ソース間短絡]
BVDSV	ドレイン・ソース間降伏電圧 [ゲート、基板電圧印加]
BVGSO	ゲート・ソース間降伏電圧 [ドレイン開放]
BVGDO	ゲート・ドレイン間降伏電圧 「ソース開放]
BVGDS	ゲート・ドレイン間降伏電圧 [ソース・ドレイン間短絡]
IGL	ゲート漏れ電流 [ソース・ドレイン短絡]
IDL	ドレイン漏れ電流 「ゲート・ソース間短絡]
ISL	ソース漏れ電流 [ゲート・ドレイン間を短絡]
IDS	ドレイン電流 [ゲート電圧印加]
ISD	ソース電流 [ゲート電圧印加]
VTHO	しきい値電圧 [サブスレッショルド領域]
VTH1	しきい値電圧 [飽和領域]
VTH2	しきい値電圧 [飽和領域 2点測定]
VTH2m	しきい値電圧 [飽和領域 n 点最小二乗法測定]
V T H 3	しきい値電圧 [飽和・非飽和両領域 ニュートン法]
V T H 4	しきい値電圧 [飽和・非飽和両領域 5270使用 バイナリサーチ]
VTH6	しきい値電圧 [飽和・非飽和両領域 5270使用 リニアサーチ]
SO	サブスレッショルドスウィング
Isub	基板電流
Isub_max	基板電流最大値
Idvd_sgl	ID-VD SWEEP測定
Idvd_mlt	ID-VD SWEEP測定 [GATE STEP]
Idvg_sgl	ID-VG SWEEP測定
Gm	ID-VG SWEEP測定しGm maxを算出
Idvg_mltvd	ID-VG SWEEP測定 [DRAIN STEP]
Idvg_sglvb	ID-VG SWEEP測定 [SUBSTRATE STEP]

TDA TECHNO

-1

バイポーラ

BVCBO	コレクタ・ベース間降伏電圧 [エミッタ・オープン]
BVEBO	エミッタ・ベース間降伏電圧 [コレクタ・オープン]
BVCEO	コレクタ・エミッタ間降伏電圧 [ベース・オープン]
BVCES	ベース・エミッタ間降伏電圧 [ベース・エミッタ短絡]
BVCEV	コレクタ・エミッタ間降伏電圧 [ベース電圧印加]
BVCEI	コレクタ・エミッタ間降伏電圧 [ベース電流印加]
BVECO	エミッタ・コレクタ間降伏電圧 [ベース開放]
ICEO	コレクタ・エミッタ間遮断電流 [ベース開放]
ICBO	コレクタ・ベース間遮断電流 [エミッタ開放]
IEBO	エミッタ・ベース間遮断電流 [コレクタ開放]
ICES	コレクタ・エミッタ間遮断電流 [ベース・エミッタ短絡]
ICEV	コレクタ・エミッタ間遮断電流 [ベース電圧印加]
IBCO	ベース・コレクタ間電流 [エミッタ開放]
IBEO	ベース・エミッタ間電流 [コレクタ開放]
IECO	ベース・エミッタ間電圧 [コレクタ開放]
VBCO	ベース・コレクタ間電圧 [エミッタ開放]
VCEsat	コレクタ・エミッタ飽和電圧
VBEsat	ベース・エミッタ飽和電圧
VECsat	エミッタ・コレクタ飽和電圧
HFE	直流電流増幅率

その他

R2t_If	2端子抵抗測定 [High側電流印加]
R 2 t V f	2端子抵抗測定 [H i g h 側電圧印加]
R 4 d	4端子抵抗測定 [差動電圧測定、Vm使用]
R4t_If	4 端子抵抗測定 [H i g h 側電流印加、差動電圧測定]
R 4 t V f	4 端子抵抗測定 [H i g h 側電圧印加、差動電圧測定]
R4f	ファン・デア・ポウ4端子抵抗測定
Сар	容量測定 [4284Aまたは4294A使用]
C v s w e e p	C-V SWEEP測定 [4284Aまたは4294A使用]

Ppackage

プロービングパターン

丸ウェハ用

TOA TECHNO

Ppackage

基板サイズ・チップサイズ(パネルサイズ)を指定することで、チップを

等間隔で配置した基板マップを自動作成します。

プロービングパターン

角基板用

[チップ設定画面]

TOA TECHNO =

テストプラン

	テストプランファイルに測定項目をモジュールごとに記述します。
Test Plan Set X Test Plan File Operator Edit Date Version No. Sample0415A LOAD SAVE PHILTEC 200309/05 16:35 002	テストプランファイルには最大2000種の測定項目を保存できます。
No. Module Name Nom Kom Kom <th< th=""><th>各測定項目の測定条件にSWEEP範囲やグラフスケール、判定値等も記述します。 条件設定確認のための測定を行うこともできます。</th></th<>	各測定項目の測定条件にSWEEP範囲やグラフスケール、判定値等も記述します。 条件設定確認のための測定を行うこともできます。
No. Node Name Pod. Force Mode Meas Name Module Name No. Node Name Pod. Porce Mode Meas Name Node Name Pod. Porce Mode Meas Name Node Name Node Name Pod. Porce Mode Meas Name Node Name Pod. Node Name Pod. Node Name Pod. Node Name Node Name	Output Name, Unit United Defect Gogy Defect Gogy Defect Gogy Defect Pm Bet DV 1000 A V 1000 A Difference Massurement Massurement Messurement
「Jarentwe Condition Pin No. 010203 [測定条件設定画面] UNESTRATE SMULL 「UNDESTRATE SMULL UNDESTRATE SMULL [UNDESTRATE SMULL UNDESTRATE SMULL	0 00000 000 00 10 11 12 13 14 15 10 17 14 10 20 23 23 24 26 27 27 28 20 13 13 23 24 34 24 24 24 24 24 24 24 24 24 24 24 24 24

TOA TECHNO

データファイル、テストプランファイル、プロービングファイル等を指定

測

定

TDA TECHNO =

データ解析

DataFile	WDataWParaDataWTEST1015AWTEST1015A		ファイル選択	データサマリ
_ot Id	TEST1015A		ウェハ選択	ウェハマップ
Product ID	TEST MEASUREMENT		チップ選択	
fest Plan File	C#SPARK#Cond#Plan#TEST1016	001	項目選択	
Probing File	C#SPARK#Cond#Prober#SAMPLE002	008		
Operator	PHILTEC			
File Comment	TEST MEASUREMENT DATA			
Date	2002/10/16 14:43			
Wafer Num	5 5			
Chip Num	61 61			
tem Num	16 16		DAL	

[データ解析メイン画面]

測定データファイルをもとに、サマリ、ウェハマップ、特性グラフを表示 します。

データファイルはCSV形式のASCIIファイルですので、他のWindow sアプリケーションでも容易にデータ解析を行うことができます。

) ataE	ile.	VDataV	LVDataVParaDataVTEST1015AVTEST1015A Test Plan File CVSPARKVCondVPlanVTEST1016 001													
alar		TEST1015A Probing Elle CVSPARXVCord/ProberVSAMPLE002 F							- 009							
otria		TEOTIN	EAOUDEN	ICAUT.				PIO	iong rite	2002/4	0146 44-42				000	
rodu	αυ	DU III TO	2 CROCKEN	IEINI				Mes	as Date	2002/1	0/10 14.43					
pera	itor	PHILTE	u						_						a Out	
ile C	omm	ent TEST M	EASUREN	IENT DATA											e ou	i i
	Tune	No. budge		n	Index Do		a hudaa	1		0.55	C All Date	i mun			EXIT	
uoye	riype	No Subge	300	rcange	Judge Ka	inge si o	+ Juoge	0	Lauseus	UFF	i Ali Data	in reang		_		1
		Module							TEST	1						
		item			TEST	T1_1					TEST	r1_2			TEST1	_3
		Output	BVDSS	BVDSS1	BVDSS2	BVDSS3	BVDSS4	BVDSS5	BVDSS	BVDSS1	BVDSS2	BVDSS3	BVDSS4	BVDSS5	BVDSS	BVD
		Unit	[V]	[V1]	[V2]	[V3]	[V4]	[V5]	[V]	(V1)	[V2]	[V3]	[V4]	[V5]	[V]	
		Judge Low	400.0m	4.000	40.00	400.0	4.000K	40.00K	400.0m	4.000	40.00	400.0	4.000K	40.00K	400.0m	4.
		Judge High	700.0m	7.000	70.00	700.0	7.000K	70.00K	700.0m	7.000	70.00	700.0	7.000K	70.00K	700.0m	7.
		49	445.0m	4.000	71.50	490.0	4.000K	67.00K	580.0m	6.700	67.00	760.0	4.450K	40.00K	400.0m	6.1
		50	760.0m	6.250	71.50	715.0	6.700K	67.00K	670.0m	7.150	44.50	805.0	6.700K	53.50K	805.0m	4.
		51	625.0m	4.900	62.50	445.0	5.350K	/1.50K	760.0m	6.700	67.00	625.0	8.050K	44.50K	535.0m	- 1.
		52	020.0m	7.160	40.00	625.0	0.300K	80.60K	025.0m	4,400	49.00	400.0	7.160K	62.00K	025.0m	0.
		53	400.0m	7.600	40.00	445.0	7.600K	52.50K	400.0m	7.150	90.50	400.0	6.250K	76.00K	605.0m	6.
		55	625.0m	7.600	44.50	715.0	6 700K	44 50K	625.0m	8.050	67.00	625.0	8.050K	71.50K	400.0m	4
		56	400.0m	5.350	49.00	445.0	6.250K	53.50K	670.0m	4.900	80.50	535.0	4.900K	76.00K	625.0m	7.
		57	490.0m	7.150	53.50	670.0	5.350K	62.50K	580.0m	5.350	58.00	490.0	8.050K	80.50K	490.0m	7.
		58	760.0m	7.600	40.00	670.0	7.600K	58.00K	760.0m	7,150	80.50	760.0	4.900K	67.00K	625.0m	7.
1	[1]	59	580.0m	6.250	53.50	535.0	5.800K	49.00K	400.0m	5.800	58.00	445.0	4.450K	71.50K	400.0m	6.
		60	760.0m	4.900	40.00	670.0	4.450K	76.00K	535.0m	4.000	76.00	805.0	8.050K	49.00K	490.0m	4.5
		61	535.0m	4.000	76.00	670.0	8.050K	62.50K	670.0m	6.250	80.50	760.0	7.600K	80.50K	535.0m	- 43
		Average	590.5m	6.228	57.78	609.3	6.033K	58.45K	592.8m	6.303	59.88	609.3	5.853K	62.88K	567.3m	5.
		Sigma	132.9m	1.236	12.38	132.0	1.271K	12.08K	130.0m	1.209	13.60	129.6	1.464K	13.11K	128.4m	1.
		Median	580.0m	6.250	53.50	625.0	5.800K	55.75K	580.0m	6.700	62.50	602.5	5.800K	60.25K	535.0m	5.8
		Min	400.0m	4.000	40.00	400.0	4.000K	40.00K	400.0m	4.000	40.00	400.0	4.000K	40.00K	400.0m	4.0
		Max	805.0m	8.050	80.50	805.0	8.050K	80.50K	805.0m	8.050	80.50	805.0	8.050K	80.50K	805.0m	8.0
		Yield %	98.4	98.4	98.4	98.4	98.4	98.4	98.4	98.4	98.4	98.4	98.4	98.4	98.4	9
		Count	60	60	60	60	60	60	60	60	60	60	60	60	60	

[データサマリ]

[ウェハマップ]

[特性グラフ拡大表示]

[グラフィックウェハマップ]

プログラム仕様

Ppackage

アルゴリズム

組み込みアルゴリズム数	:	1000
ノード数	:	8
測定条件値数	:	20
戻り値	:	標準データ+5

テストプラン

モジュール数	:	1000
組み込みItem数	:	2000

プロービングパターン

最大チップ数	:	1000X1000	1,	000,	000
測定チップ	:	65536			
プローブシーケンス	:	16 + RAMDOM			

I-V測定、C-V測定等SWEEP測定を、連続して自動的に行うことができます。

Id-Vd, Id-Vg, C-V等標準的なSWEEP測定を組み込んでおり、プログラムソースも公開しておりますので、お客様での改造、追加が容易に行えます。

各SWEEP測定内では測定データをもとに、各種のパラメータを算出しており、 SWEEPデータとともにこれらのパラメータ値もデータファイルに格納します。パ ラメータに関してはサマリ表示、マップ表示、SWEEPデータに関してはI-Vグ ラフ、I-Vマップグラフ表示を行います。

データファイルはCSV形式で出力しますのでEXCEL等のWindowsアプリ ケーションでの解析も可能です。

また、オフラインオプションを追加していただくことで、測定コントローラとは別の PCで、測定中でもストレスなくテストプラン、プロービングパターンの作成や、 データ解析を行うことができます。オフラインオプションでは、SPARKの測定器 に関わる機能以外の機能はすべて使用できます。

特性測定プログラム

システム内には特性測定プログラムを100種まで組み込むことができます。

特性測定プログラムのプログラムソースは公開しており、お客様での 追加、改造が可能です。

プログラム内でSWEEPしたデータをもとに、最大30種までのパラ メータを算出できます。

[グラフスケール編集画面]

Cpackage

標準組み込みアルゴリズム

FET

I a v g v a I a v g SWEEP测定(D r a i n 電圧	SIEP)
IdVgVsub IdVg SWEEP測定(Sub電圧ST	EP)
mIdvgVsub IdVg SWEEP4端子測定(Sub電	「圧STEP)
I d V d I d V d SWEEP測定	
IgVg IdVg SWEEP測定	
IsubVg IsubVg SWEEP測定	

バイポーラ用

IcVce_Ib	IcVce	SWEEP測定	(Base電流	ξ S T E P)
----------	-------	---------	---------	-------------

容量測定

HfCv	CV SWEEP測定			
Hfcv_multi	Cメータを使用したSWEEP測定。	CPD, C	PQ,	CPG等を指定できます。

その他

Pパッケージと同様のSPOT測定(Pパッケージ標準組込みアルゴリズム参照)

Cpackage

プロービングパターン

丸ウェハ用

TOA TECHNO

Cpackage

基板サイズ・チップサイズ(パネルサイズ)を指定することで、チップを

等間隔で配置した基板マップを自動作成します。

プロービングパターン

角基板用

[チップ設定画面]

TOA TECHNO =

自動測定 測定条件設定

データファイル、テストテーブルファイル、プロービングファイル等 を指定することで、自動測定を行います。 C Parkage Measurement Set Table File Ver. 018 Lot ID Probing File Ver. 005 特性測定をテストテーブル上に記述します。1度の測定で最大10 Product ID TEST MEASUREMENT Chip Num 009 G:VSPARKVDataVCharDataVData#000 Data File 00種までの特性測定を行うことができます。 Test Table WSPARK#Cond#Character#zzzzIV_Me OAD. Probing Pattern C:VSPARK#Cond#Prober#SAMPLE001 Operator PHII TEC 各測定項目の測定条件にSWEEP範囲やグラフスケール等も記 File Comment TEST MEASUREMENT DATA 述します。 No. Item Name Character X Coord [um] Y Coord [um] 1 IdVg_Check1 mldVg_Vsub 2 IdVg_Vsub_vd005 IdVg_Vsub 0 条件設定確認のための測定を行うこともできます。 3 IdVd_Check1_for 0 4 IgVg_Chk1p_rev -3500 lg∀g 5 IsubVg_Chk1p_rev lsubVg NONE C Package Chara 2 IdVg_Vsub_vd00 IdVg_Vsub ▼ 02 Judge Set Port Set Mh1 Node SUBSTRATE DRAIN SOURCE Target Port SMU-2 V SMU-4 V SMU-1 V SMU-3 V IONE Y 10.00u A Force Mode, N Sween N Force N Sten **V** Force Meas Mode NONE NONE I Measure NONE 2 🔽 🛛 VTarget Pin 3.000 V Bian 50.00m N 0 M 10.00m A 10.00m A 3 🔽 Ommax Comp. ween Set Meas Set Meas Range AUTO 💌 Sweep 4 ♥ Vg@Gmmax Start 0 M Start 0 ADC Mode Hi Speed Stop 5.000 M Stop -3.000 [テストテーブル編集画面] INTEG Time Step 50.00m V Step -500.0m Filter Mode 5 🔽 Mh2 Num Num Auto Zero 10.00u A Comp 1.000m Calc Step 5.000 Comp Graph Set Hold Time 10.00m sec Delay T Sweep Data Plot O N 6 🔽 Spara Midec 1.000u Other Set 10.00 C Package Judgen Standard Range Judgement Range Unit Parameter 1 Mth1 No Judge 35.00m 200.0m 45.00m 150.0m 2 10 24.00u 12.00u 20.00u 9.000.0 👝 Graph Scale Sr 12.00 4.000u 3 Gm Graph Title Grid Line ON OFF [測定条件設定画面] 4 Gmma 5.400u 12.00 24.00m 25.00m Y1 Axis Y2 Axis-Auto Scale ON OFF 5.500 5.860 Auto Scale N OFF Auto Scale Type Type UN LO LIN LOG Type Min Min: 0 1.0E-12 Min Max 5.000 Max 1.0E-02 Max [判定値設定画面] Pitch 1.000 Pitch Pitch Label Vgate(V) Label Idrain(A) Label CONFIRM [グラフスケール編集画面]

Cpackage

TOA TECHNO 🚽

自動測定 測定

👍 Meas Wafer Set

Cpackage

全自動プローバを組み込んでいる場合、測定ウェハを指定できます。 測定時は測定データ、I-Vグラフ、ウェハマップ等を表示します

TDA TECHNO =

Cpackage

解析測定

a File C#SPARK#Data#CharData#ANA_MEASURE#defe	ult	LOAD	SAV	APPEND	Dat	a Select	Algorithm	dVg_Vd	
ta Name IdVg_Vd ChipNo 2	2003/12/08	10:54:01	Copyed		_	Va	Id/Vd=1V)	18(Vd=2V)	Idrva -
					1	0.0000E+00	6.0000E-14	8.0000E-14	3.00
1.0E-02	PH				2	5.0000E-02	7.0000E-14	7.0000E-14	5.00
					3	1.0000E-01	9.0000E-14	1.0000E-14	5.00
1.05-02					4	1.5000E-01	9.0000E-14	1.0000E-14	2.00
THE US					5	2.0000E-01	2.0000E-14	2.0000E-14	3.00
					6	2.5000E-01	1.0000E-14	7.0000E-14	5.00
1.0E-04					7	3.0000E-01	7.0000E-14	9.0000E-14	2.0
					8	3.5000E+01	7.0000E-14	1.0000E-14	1.00
1.0E-05					9	4.0000E-01	7.0000E-14	6.0000E-14	9.0
÷ 11					10	4.5000E-01	1.0000E-14	1.0000E-14	2.0
1.0E-06					11	5.0000E-01	3.0000E-14	6.0000E-14	7.0
1 11					12	5.5000E-01	3.0000E-14	4.0000E-14	7.0
1.05-07					13	6.0000E-01	6.0000E-14	6.0000E-14	5.0
				_	14	6.5000E-01	1.0812E-13	1.2614E-13	1.4
					15	7.0000E-01	4.9598E-13	5.7865E-13	6.6
1.0E-00				_	16	7.5000E-01	2.2753E-12	2.6545E-12	3.0
E 11					17	8.0000E-01	1.0438E-11	1.2177E-11	1.3
1.0E-09					18	8.5000E-01	4.7883E-11	5.5864E-11	6.3
ŧ 11					19	9.0000E-01	2.1966E-10	2.5627E-10	2.9
1.0E-10				_	20	9.5000E-01	1.0077E-09	1.1756E-09	1.3
					21	1.0000E+00	4.6227E-09	5.3932E-09	6.1
1.05-11					22	1.0500E+00	2.1207E-08	2.4741E-08	2.8
					23	1.1000E+00	9.7284E-08	1.1350E-07	1.2
				_	24	1.1500E+00	4.4629E-07	5.2067E-07	5.9
1.0E-12	2				25	1.2000E+00	3.0000E+06	3.5000E-06	4.0
0 1 2 Meat		-	5		26	1.2500E+00	8.8163E-06	1.0286E-05	1.1
vga	(v)				27	1.3000E+00	1.7694E-05	2.0643E-05	2.3
			M . D 2	005+00	28	1.3500E+00	2.9633E-05	3.4571E-05	3.9
ale Edit Auto Scale Clear Data H	xid 1 2 3	4 5	A : 2	002+00	111	* *000E.00	110000 00	C 2074 C 00	1
			Y1 :	8.1E-12	_	_	_		_

測定結果をグラフ表示、リスト表示します。グラフはY2軸まで表示できます。

過去の5つの測定結果SWEEPデータをメモリ中に記録し、表示 データの切り替えをし、過去のデータとの比較ができます。

測定アルゴリズムは、自動測定と共有できます。

グラフ上のマウスカーソルの座標を数値表示し、測定データ以 外の任意の値を読み取ることができます。

ラインカーソルを表示すると、測定データをリスト上で読み取れます。

任意の2点を通る直線をグラフ上に描画します。

測定結果データをCSVファイルに、表示グラフをビットマップファ イルに保存できます。

[測定ウェハ選択画面]

データ解析

DataFile	WDataWCharDataWTEST_0813aWTEST_0813a 79-1/J/3	変沢 データサマリ
ot Id	TEST_0813a	旅り
Product ID	TEST MEASUREMENT	R 80007
fest Table File	C#SPARK#Cond#Character#SAMPLE001 029 1029	1R
Probing File	C#SPARK#Cond#Prober#SAMPLE001 003	
Operator	PHILTEC	
ile Comment	TEST MEASUREMENT DATA	
Date	2002/08/13 10:03	
Vafer Num	3 3	
hip Num	17 17	
tem Num	5 5	

[データ解析メイン画面]

自動測定データファイルをもとに、サマリ、ウェハマップ、特性グラフを 表示します。

データファイルはCSV形式のASCIIファイルですので、他のアプリ ケーションでも容易にデータ解析を行うことができます。

any s																		
taFile	9	.¥Data¥(/harData¥T	EST_0813a	TEST_081	3a		Tes	st Table File	CASPAR	8.WCond#C	haracter¥S	AMPLE001		029			
Id		TEST_0	813a					Pro	bing File	CWSPAR	K#Cond#P	rober¥SAM	PLE001		003			
duct	ID	TEST M	EASUREM	ENT				Me	as Date	2002/08	/13 10:03	45						
erato	r	PHILTE	0															
Cor	mment	TEST M	EASUREM	ENT DATA										F	le Out			
ige T	ype	No Judge	Std I	Range [Judge Ra	nge Std	+ Judge	8	tatistics	OFF	All Data	IN Rang			EXIT			
Т		Item								IdVg00	1							_
	B	ias Step			1.0	00					2.0	00				3.000		
	Pa	rameter	Vth1	ld	Gm	Gmmax	Vth2	Spara	Vth1	ld	Gm	Gmmax	Vth2	Spara	Vth1	ld	Gm	Gr
		Unit	[V]	[A]	[AV]	[AV]	[V]	U	[V]	[A]	[AV]	[AV]	[V]	0	[V]	[A]	[AV]	
	Juc	ige Low	45.00m	12.00u	5.000u	6.000u	NoJudge	5.600	45.00m	12.00u	5.000u	6.000u	NoJudge	5.600	45.00m	12.00u	5.000u	6
44	Jud	ige High	150.0m	20.00u	10.00u	10.000	NoJudge	5.800	150.0m	20.00u	10.00u	10.00u	NoJudge	5.800	150.0m	20.00u	10.00u	1
		1	225.7m	7.364u	3.8870	28.24u	24.75m	5.521	202.0m	8.037u	5.116u	28.76u	24.75m	5.542	180.3m	8.578u	9.1370	3
		2	189.5m	8.6430	5.1860	29.480	24.75m	5.571	164.0m	9.2500	8.5400	40,500	24.75m	5.817	150.2m	9.9230	10.150	3
L		3	153.7m	9.8710	3.8300	42.550	24.75m	5.617	149.4m	10.820	0.2480	41.230	24.75m	9,00,0	124.UM	11.670	7.2230	
L		4	131.7m	11.040	0.0900	49.200	24.75m	5.009	119.7m	12.440	10.680	47.320	24.7 pm	5.098	100.1m	13.300	12600	
L		0	05.67m	12.030	4.5790	46,140	24.75m	6.701	90.80m	16.000	9.0170	66.260	24.75m	5,714	76.66m	16.340	7.4200	
L		7	93.57m	14.500	13.500	60.060	24.75m	5.7.33	70.67m	15.64u	9.170	50.00u	24.75m	6 773	67.10m	19.070	16.190	-
L		,	78.38m	15.980	9.4480	68.200	24.75m	5.766	72.75m	17.330	11.81.	60.020	24.75m	5 792	60.02m	18.81.	8.0700	-
L		9	71.26m	17.120	8 6420	68.170	24.75m	6.782	68.42m	18.880	12.950	77.180	24.75m	6.813	64.27m	21.050	11.730	
L		10	61.13m	18.48u	12.08u	73.08u	24.75m	5.791	51.57m	20.31u	15.83u	77.31u	24.75m	5.820	43.69m	22.28u	8.144u	7
L		11	58.47m	19.86u	6.258u	78.48u	24.75m	5.813	42.15m	21.41u	8.990u	70.76u	24.75m	5.825	40.79m	23.48u	18.46u	1
		12	48.95m	20.48u	11.37u	71.74u	24.75m	5.826	38.40m	23.64u	19.01u	60.25u	24.75m	5.843	35.64m	24.91u	11.85u	9
1	[1]	13	44.27m	22.46u	11,140	82.08u	24.75m	5.834	31.73m	24.520	11.550	88.32u	24.75m	5.851	27.75m	27.20u	20.46u	1
		14	38.78m	23.20u	9.671u	79.73u	24.75m	5.844	32.58m	26.37u	16.80u	89.27u	24.75m	5.861	24.94m	27.04u	5.871u	8
		15	32.65m	25.55u	4.705u	103.5u	24.75m	5.851	27.33m	27.04u	13.63u	114.8u	24.75m	5.861	21.86m	29.43u	18.84u	1
		16	32.03m	26.44u	18.86u	80.08u	24.75m	5.858	25.61m	28.84u	5.816u	117.8u	24.75m	5.871	20.00m	31.20u	22.66u	9
		17	25.60m	27.41u	12.350	70.28u	24.75m	5.860	21.88m	29.01u	21.03u	77.84u	24.75m	5.875	15.61m	31.66u	11.770	1
		Average	88.15m	17.35u	8.538u	63.18u	24.75m	5.752	76.63m	18.94u	11.17u	67.61u	24.75m	5.774	66.91m	20.58u	12.27u	7
		Sigma	58.31m	6.348u	4.213u	20.45u	673.0p	104.2m	54.01m	6.895u	4.799u	25.11u	673.0p	98.39m	48.60m	7.409u	5.178u	3
		Median	71.25m	17.120	8.542u	68.200	24.75m	5.782	58.42m	18.88u	10.680	60.250	24.75m	5.813	54.27m	21.050	11.730	7
		Min	25.60m	7.3640	3.830u	28.240	24.75m	5.521	21.88m	8.037u	5.116u	28.76u	24.75m	5.542	15.61m	8.578u	5.871u	3
		Max	225.7m	27.41u	18.86u	103.5u	24.75m	5.860	202.0m	29.01u	21.03u	117.8u	24.75m	5.875	180.3m	31.66u	22.66u	1
		Yield %	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	1
-		Count	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	
2	[2]	1	176.3m	8.874u	3.419u	31.99u	24.75m	5.610	157.5m	10.05u	8.403u	43.05u	24.75m	5.632	150.3m	10.92u	9.231u	4
4		21	138.7m	10.450	6.892u	49.320	24.75m	5.650	129.4m	11.350	4.062u	46.51u	24.75m	5.692	113.2m	12.990	7.9380	- 4

[データサマリ]

Cpackage

😤 Analy	sis Wafer	Map													
Data F	ile	.¥Data¥Chi	ar Data¥TE:	ST_0911a¥	TEST_09114	•			w	afer 01	(001) 💌 V	Vafer - 1			
Lot ID		TEST_091	1a							tem Idv	a001	-			
Produ	ct ID	TEST MEA	SUREMEN	NT						Nes DR	AIN 10	00			
Test T	able File	C#SPARK	(Cond)(Cha	racter#SA	MPLE002		001				1.0			GI	RAPH MAP
Probin	g File	CWSPARK	(Cond)(Prob	ber#SAMPL	.E001		006		Param	eter Vth	1	-			File Out
Operat	tor	PHILTEC							Judge T	ype	No Judg	ė			
Meas	Date	2002/09/1	1 16:43								Std Rang)e			ile Out All
File Cr	mment	TEST PRO	BER ERE	OR							Judge Rar	ige			EXIT
	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
7															
6								227.2m	_						
				_				400.00	_						
4			_		162.700			190.0m	_		120.6m		_		
- 2			_	_	105.711			117.400	_	_	139.00				
			_	_				117,400	_						
		·PE-		95.96m		78.28m		69.47m		65.05m		54.32m		53.19m	
-1															
-2								42.11m							
-3					36.64m						33.58m				
-4								30.08m							
-5															
-6								26.19m							
-7															
		NoJudge	AliData												
	Average	88.92m	88.92m		Standard			+							
	Sigma	61.79m	61.79m		(Low)	35.00m		+			-				
	median	09.47m	09.47m		(Migh)	200.0m		+			-			+	
	Max	20.19m	20.19m		Judge	45.00m		++			-			+	
	Vield 96	94.1	221.2m		(LOW) (High)	45.00m		+ +						+	
	Count	16	16		(ragin)	150.0m		+							
	~vuiit	10	10												

[ウェハマップ]

[グラフィックウェハマップ]

[特性グラフ拡大表示]

TOA TECHNO =

プログラム仕様

特性プログラム 組み込みアルゴリズム数 : 100 ノード数 : 6 パラメータ : 30 測定条件値数 : 20 1次スイープステップ数 : 1001 2次スイープステップ数 : 100

テストテーブル 組み込み I t e m数 : 1000

プロービングパターン 最大チップ数 : 1000×1000 1,000,000 最大測定チップ数 : 65,536 プローブシーケンス : 16+RAMDOM

toa techno

4294Aの使用を前提にした容量測定ツールです。

C-V測定、Z-F測定等のSWEEP測定を連続して自動的に行うことができま す。

C-V、Z-Fなどの代表的なSWEEP測定を組み込んでおり、プログラムソース も公開しておりますので、お客様での改造、追加が容易に行えます。

各SWEEP測定内では測定データをもとに、各種のパラメータを算出しており、 SWEEPデータとともにこれらのパラメータ値もデータファイルに格納します。パ ラメータに関してはサマリ表示、マップ表示、SWEEPデータに関してはC-Vグ ラフ、Z-Fマップグラフ表示を行います。

データファイルはCSV形式で出力しますのでEXCEL等のWindowsアプリ ケーションでの解析も可能です。

また、オフラインオプションを追加していただくことで、測定コントローラとは別の PCで、測定中でもストレスなくテストプラン、プロービングパターンの作成や、 データ解析を行うことができます。オフラインオプションでは、SPARKの測定器 に関わる機能以外の機能はすべて使用できます。

TOA TECHNO

測定プログラム

Node

Port

システム内には特性測定プログラムを100種まで組み込むこと

測定プログラムのプログラムソースは公開しており、お客様で

プログラム内でSWEEPしたデータをもとに、最大30種までの

標準組み込みアルゴリズム

C−V測定

CV_Cp[) Cp-Dモ-	ードによる電圧SWEEP測定	
CV_Cp[)_Hys Cp-Dモ-	ードによる電圧SWEEP測定(ヒステリシス測定)	
CV_CsF	ls Cs-Rsモ	ードによる電圧SWEEP測定	
CV_CsF	∖s_Hys Cs-Rsモ	ードによる電圧SWEEP測定(ヒステリシス測定)	
CV_ZTł	ι Z-θ - -	ードによる電圧SWEEP測定	
CV_RX	R−Xモー	-ドによる電圧SWEEP測定	
CV_2FF	KEQ 2周波法	aによるCp、Rp、Rsを電圧SWEEP測定	
CV_MIN	Ⅰ_PHASE 最小位相	相法を用いたCp、Rp、Rsを電圧SWEEP(ステップ)	測定

Z-F測定

ZF_CpD	Cp-Dモードによる周波数SWEEP測定
ZF_CsRs	Cs-Rsモードによる周波数SWEEP測定
ZF_ZTh	Z-θモードによる周波数SWEEP測定
ZF_RX	R-Xモードによる周波数SWEEP測定

スポット測定

CSPOT_CpD	Cp-Dモードによるスポット容量測定
CSPOT_CsRs	Cs-Rsモードによるスポット容量測定
CSPOT_ZTh	Z-θモードによるスポットZ-θ測定
CSPOT_RX	R-XモードによるスポットR-X測定
CSPOT_2FREQ	2周波法によるCp、Rp、Rsをスポット算出
CSPOT_MIN_PHASE	最小位相法を用いたCp、Rp、Rsスポット算出

プロービングパターン

[チップ設定座標入力画面]

TOA TECHNO

X: Y: 1

自動測定 測定条件設定

Table File Ver. 004

F Package Measurement Set

Fpackage

測定に際して、特性測定をテストテーブル上に記述します。 1度の測定で最大1000種までの測定を行うことができます。

[グラフスケール編集画面]

TOA TECHNO =

自動測定 測定

👍 Meas Wafer Set

全自動プローバを組み込んでいる場合、測定ウェハを指定できます。 測定時は測定データ、C-Vグラフ、ウェハマップ等を表示します

TOA TECHNO =

解析測定

ta File C#SPARK#Data#CharData#ANA_MEASURE#d	LO/	D SAVE	APPEND	Data Select	Algorithm	/g_Vd	
ta Name IdVg_Vd ChipNo 2	2003/12/08 10:54:0	1 Copyed		Vg	ld(Vd=1V)	d(Vd=2V)	Id(Vd
	DADH			1 0.0000E+00	6.0000E-14	8.0000E-14	3.00
1.0E-02	North Contraction			2 5.0000E-02	7.0000E-14	7.0000E-14	5.00
1				3 1.0000E-01	9.0000E-14	1.0000E-14	5.00
1.0E-03				4 1.5000E-01	9.0000E-14	1.0000E-14	2.0
				5 2.0000E-01	2.0000E-14	2.0000E-14	3.0
105.04				6 2.5000E-01	1.0000E-14	7.0000E-14	5.00
1.0E-04				7 3.0000E-01	7.0000E-14	9.0000E-14	2.0
				8 3.5000E-01	7.0000E-14	1.0000E-14	1.0
1.0E-05				9 4.0000E-01	7.0000E-14	6.0000E-14	9.0
E			_	10 4.5000E-01	1.0000E-14	1.0000E-14	2.0
1.0E-06				11 5.0000E-01	3.0000E-14	6.0000E-14	7.0
				12 5.5000E-01	3.0000E-14	4.0000E-14	7.0
1.0E-07				13 6.0000E-01	6.0000E-14	6.0000E-14	5.0
				14 6.5000E-01	1.0812E-13	1.2614E-13	1.4
105-00				15 7.0000E-01	4.9598E-13	5.7865E-13	6.6
				16 7.5000E-01	2.27538-12	2.6545E-12	3.0
1 45 44				17 8.0000E+01	1.0438E-11	1.21//E-11	1.3
1.02-09				18 8.5000E-01	4.78635-11	0.0804E-11	0.3
E 11				19 9.0000E-01	1.00775-00	1.17665-00	4.0
1.0E-10				20 8.0000E+01	4.62275.00	£ 20225-00	6.4
E				21 1.0500E+00	2.1207E-09	3.3932E-09	2.0
1.0E-11 F				22 1.0000E+00	9.72945-09	1.12505-07	1.0
11				24 11500E+00	4.46295-07	5 20675-07	5.0
1.0E-12				25 1 2000E+00	3.0000E-06	3.5000E-06	4.0
0 1 2	3 4	5		26 1 2500E+00	8 8163E-06	1.0286E-05	11
vi	pate(V)			27 1 3000E+00	1.7694E-05	2.0643E-05	23
				28 1.3500E+00	2.9633E-05	3.4571E-05	3.9
unio Entita I data Basta I Data		X : 2.868	+00	22 4 40005-00	1 10000 00	C 2074E 0C	0.0
care Edit Auto Scare Clear Data	1 2 3 4 5	V1 · 81	E-12				

測定結果をグラフ表示、リスト表示します。グラフはY2軸まで表示できます。

過去の5つの測定結果SWEEPデータをメモリ中に記録し、表示 データの切り替えをし、過去のデータとの比較ができます。

測定アルゴリズムは、自動測定と共有できます。

グラフ上のマウスカーソルの座標を数値表示し、測定データ以 外の任意の値を読み取ることができます。

ラインカーソルを表示すると、測定データをリスト上で読み取れます。

任意の2点を通る直線をグラフ上に描画します。

測定結果データをCSVファイルに、表示グラフをビットマップファ イルに保存できます。

[測定ウェハ選択画面]

データ解析

DataFile	PIDataWCharDataWTEST_0813aWTEST_0813a		ファイル選択	データサマリ
Lot Id	TEST_0813a		ウェハ灌訳	ウェハマップ
Product ID	TEST MEASUREMENT		チップ選択	特性グラフ
lest Table File	CWSPARK#Cond#Character#SAMPLE001	029	項目選択	
Probing File	CWSPARK#Cond#Prober#SAMPLE001	003		
Operator	PHILTEC			
ile Comment	TEST MEASUREMENT DATA			
Date	2002/08/13 10:03			
Wafer Num	3 3			
Chip Num	17 17			
tem Num	5 5		EXIT	

[データ解析メイン画面]

自動測定データファイルをもとに、サマリ、ウェハマップ、特性グラフを 表示します。

データファイルはCSV形式のASCIIファイルですので、他のWindow sアプリケーションでも容易にデータ解析を行うことができます。

<u>æ</u> i	Anah	rsis D	ata Summa	жу															_ [] ×
	hataF	ile	.¥Data	¥CharData¥1	EST 0813	a¥TEST 081:	Sa	_	Ter	st Table Fil	. CWSPAR	8.WCondWC	haracter¥S	AMPLE001		029			
	of Id		TEST	0813a					Pro	abina File	CWSPAR	KWCond#P	rober¥SAM	IPLE001		003			
P	nortu	et ID	TEST	MEASUREN	IENT				Me	as Date	2002/08	/13 10:03	45						
	hoera	tor	PHILT	EC						000000									
F	ile C	omm	ITEST	MEASUREN	IENT DAT	A				_					F	ile Out			
			and Leases													_			
J	udge	Type	No Judy	pe Std	Range	Judge Rar	nge Sk	+ Judge	8	tatistics 📘	OFF	All Data	IN Rang			EXIT			
ſ			Item	i							IdVg00	1							-
			Bias Step	i i		1.0	00					2.0	00				3.000		
			Parameter	r Vth1	ld	Gm	Gmmax	Vth2	Spara	Vth1	ld	Gm	Gmmax	Vth2	Spara	Vth1	ld	Gm	Gm
			Uni	t [V]	[A]	[AV]	[AV]	[V]		[V]	[A]	[AV]	[AV]	[V]		[V]	[A]	[AV]	
			Judge Low	45.00m	12.000	5.000u	6.000u	NoJudge	5.600	45.00m	12.00u	5.000u	6.000u	NoJudge	5.600	45.00m	12.00u	5.000u	6.0
Ŀŀ	_	_	Judge Higt	150.0m	20.000	2.997.	28.24	NoJudge	5.800	150.0m	20.000	10.000	28.76	NoJudge	5.800	150.0m	20.000	0.1270	10
				189.5m	8.6430	5.186u	29.480	24.75m	5.571	164.0m	9.250u	6.540u	40.500	24.75m	5.617	150.2m	9.9230	10.150	38
				153.7m	9.871u	3.830u	42.55u	24.75m	5.617	149.4m	10.82u	6.248u	41.23u	24.75m	5.654	124.0m	11.67u	7.223u	49
			-	131.7m	11.04u	6.096u	49.25u	24.75m	5.669	119.7m	12.44u	7.730u	47.32u	24.75m	5.698	108.1m	13.30u	8.084u	40
				118.1m	12.630	4.579u	44,14u	24.75m	5.701	96.80m	13.54u	10.680	52.58u	24.75m	5.714	86.65m	14.94u	12.500	53
			6	95.57m	13.77u	5.657u	46.120	24.75m	5.735	88.79m	15.00u	8.017u	55.35u	24.75m	5.752	76.55m	16.37u	7.4260	61
			7	92.65m	14.59u	13.50u	58.96u	24.75m	5.741	79.67m	15.64u	8.179u	50.02u	24.75m	5.773	67.19m	18.07u	16.18u	70
			(78.38m	15.98u	9.448u	68.20u	24.75m	5.766	72.75m	17.33u	11.81u	60.09u	24.75m	5.792	60.02m	18.81u	8.070u	78
			ę	71.25m	17.120	8.542u	68.17u	24.75m	5.782	58.42m	18.88u	12.950	77.18u	24.75m	5.813	54.27m	21.05u	11.730	59
			1(61.13m	18.48u	12.08u	73.08u	24.75m	5.791	51.57m	20.31u	15.83u	77.31u	24.75m	5.820	43.69m	22.28u	8.144u	76
			11	58.47m	19.86u	6.258u	78.48u	24.75m	5.813	42.15m	21.41u	8.990u	70.76u	24.75m	5.825	40.79m	23.48u	18.46u	10
	- 1	111	12	48.95m	20.48u	11.37u	71.74u	24.75m	5.826	38.40m	23.64u	19.01u	60.25u	24.76m	5.843	35.64m	24.91u	11.85u	93
	- 1	1.1	13	44.27m	22.46u	11.140	82.08u	24.75m	5.834	31.73m	24.520	11.550	88.320	24.75m	5.851	27.75m	27.200	20.460	10
			14	38.78m	23.20u	9.671u	79.73u	24.75m	5.844	32.58m	26.37u	16.80u	89.27u	24.75m	5.861	24.94m	27.04u	5.871u	82
			15	32.65m	25.55U	4.705u	103.5u	24.75m	5.851	27.33m	27.04u	13.63u	114.8u	24.75m	5.861	21.86m	29.43u	18.84u	13
			18	32.03m	26.44u	18.86u	80.080	24.75m	5.858	25.61m	28.84u	5.816u	117.80	24.75m	5.871	20.00m	31.200	22.660	92
			1/	25.60m	27.410	12.350	70.280	24.75m	5.860	21.88m	29.010	21.030	77.840	24.75m	5.875	15.81m	31,860	11.770	14
			Average	88.15m	17.350	8.5380	63.180	24.75m	0.702	70.03m	18.940	11.170	67.610	24.75m	00.20m	66.91m	20.580	12.270	
			Sigma	71.26m	0.3400	9.2130	20.450	073.0p	104.2m	54.01m	0.0950	4.7990	25.110	073.0p	98.39m	48.00m	7.4090	5.1780	32
			Median	26.60m	7.2640	2.020	20.240	24.750	5.621	21.000	0.0270	6.1100	20.760	24.750	5.613	16.61m	21.000	6.0710	20
			Mo	20.00m	27.410	19.960	102.50	24.75m	5.960	202.0m	20.010	21.030	117.90	24.75m	5.975	190.3m	31.660	22.660	1.4
			Vield 9	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	11
			Court	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	
	-		1	176.3m	8.874u	3.419u	31.990	24.75m	5.610	157.5m	10.05u	8.403u	43.05u	24.75m	5.632	150.3m	10.92u	9.231u	40
	2	[2]		138.7m	10.45u	6.892u	49.32u	24.75m	5.650	129.4m	11.35u	4.062u	46.51u	24.75m	5.692	113.2m	12.99u	7.938u	42 -
	•	1																	

[データサマリ]

[ウェハマップ]

[特性グラフ]

[グラフィックウェハマップ]

[特性グラフ拡大表示]

TOA TECHNO

プログラム仕様

特性プログラム 組み込み可能アルゴリズム数 : 100 ノード数 : 6 パラメータ : 30 測定条件値数 : 20 1次スイープステップ数 : 1001 2次スイープステップ数 : 100

テストテーブル 組み込み I t e m数 : 1000

プロービングパターン 最大チップ数 : 1000×1000 1,000,000 最大測定チップ数 : 65,536 プローブシーケンス : 16+RANDOM

TDDB、TZDB、ホットキャリア、チャージポンプ、エレクトロマイグレーションの信頼性評価測定を自動的に行うことができます。

各評価プログラムの、プログラムソースも公開しておりますので、お客様での 改造、追加が容易に行えます。

各評価プログラムのご導入は、必要に応じて組み合わせが可能です。

データファイルはCSV形式で出力しますのでEXCEL等のWindowsアプリ ケーションでの解析も可能です。

また、オフラインオプションを追加していただくことで、測定コントローラとは別のPCで、測定中でもストレスなくテストプラン、プロービングパターンの作成や、 データ解析を行うことができます。オフラインオプションでは、SPARKの測定 器に関わる機能以外の機能はすべて使用できます。

評価方法

TDDB 定電圧ストレス ストレス電圧測定 設定電圧測定 定電流ストレス ストレス電流測定 設定電流測定 ステップ電圧ストレス ストレス電圧測定 設定電圧測定 ステップ 雷流ストレス (Linear/Log) ストレス電流測定 設定電流測定 パルスストレス 設定電圧測定

TZDB 電圧SWEEP 電流SWEEP

ホットキャリア 定電圧ストレス パルスストレス

チャージポンプ 矩形波法

エレクトロマイグレーション 定電圧ストレス ストレス電圧測定 設定電圧測定 定電流ストレス ストレス電流測定 設定電流測定 パルスストレス ストレス電圧測定 設定電圧測定

TOA TECHNO 🚽

TDDB測定

A R Package TDDB H

Rpackage

TDDBストレス/測定パターン

Rpackage

定電圧ストレス/ストレス電圧測定

定電流ストレス/ストレス電流測定

ステップ電圧ストレス/ストレス電圧測定

Breakdown Monitor Measurement

定電圧ストレス/設定電圧測定

定電流ストレス/設定電流測定

ステップ電流ストレス/設定電流測定

TOA TECHNO

TDDBデータ解析

DataType	BOOT			
DataFile	WReIDataWTDDB#SAMPLE1106A#SAMPLE1106A		ファイル選択	データサマリ
Lot Id	SAMPLE1106A		ウェハ選択	ウェハマップ
Product ID	TEST MEASUREMENT		チップ選択	特性グラフ
Fest Table File	VSPARK#Cond#Reliability#TDDB#SAMPLE001	000	項目還訳	
Probing File	C#SPARK#Cond#Prober#SAMPLE001	007		945/05496
Operator	PHILTEC			
File Comment	TEST MEASUREMENT DATA			
Date	2002/11/06 11:59			
Nafer Num	10 10			
Chip Num	5 5			
tem Num	3 3		EXIT	

Anal	ysis D	ata Summai	y (TDDB)											
ata	File	WReIDo	ta¥TDDB¥S	SAMPLE012	AAVSAMPL	E0124A		Т	est Table Fi	IIE IVSPA	RKVCondVI	%eliability¥*	TOOBYSAMP	LE001
ot ID)	SAMPL	E0124A					Р	robina File	CWSP	ARK¥Cond®	ProberWSA	MPLE006	
hodu	et ID	TEST		_					ase Date	2003	01/24 11:4	5:46		
1001	and the second	DLIII TO		_					0000000	10000	011241114	0.40		
per	ator	PHILIE							_					File
ile C	comme	ent SAMPL	EUAIA											
) ata	Туре	Break	down Time	e Q 8 0	0 [C/cm2]									E
		ltern		TDD	801	1 TDDB02 TDDB03								
		Device	High01	High02	High03	High04	High01	High02	High03	High04	High01	High02	High03	
	11.20	12	- P E -	- P E -	- P E -	- P E -	- P E -	- P E -	- P E -	- P E -	- P E -	- P E -	- P E -	
~	11.4	13	+ P E +	• P E •	+ P E +	• P E •	• P E •	+ P E +	• P E •	- P E -	+ P E +	• P E •	+ P E +	
		1	- NBD -	36.38	57.52	46.14	36.00	55.00	41.50	50.50	22.77	1.219	38.81	
		2	23.99	34.14	7.110	18.70	10.00	8.000	20.02	- NBD -	9.547	1.625	31.50	
		3	- NBD -	28.86	2.234	20.33	- NBD -	74.50	- NBD -	- NBD -	47.56	2.843	4.672	
		4	• P E •	- P E -	+ P E +	- P E -	- P E -	+ P E +	• P E •	- P E -	+ P E +	- P E -	- P E -	
	[13]	5	9.750	1.016	26.22	9.953	90.50	18.50	40.02	- NBD -	5.688	43.70	5.078	
		6	24.19	20.53	24.39	5.485	4.000	- NBD -	99.55	82.55	9.547	34.94	31.28	
3		7	29.88	203.0m	49.80	29.88	22.00	75.00	50.03	- NBD -	7.109	52.84	18.50	
		8	1.828	17.49	7.110	15.45	63.00	500.0m	24.50	14.00	203.0m	406.0m	21.14	
		9	16.47	22.58	5.891	16.06	55.05	78.55	2.000	53.55	3.453	2.234	45.73	
		10	- NBD -	15.02	30.08	8.328	96.50	10.00	58.50	5.000	31.30	7.312	41,47	
		11	25.20	- NBD -	19.11	1.625	98.00	26.50	16.50	- NBD -	4.062	6.500	10.97	
		12	7.719	40.25	15.02	31.30	8.500	18.00	12.00	10.00	- NBD -	9.750	26.83	
		13	6.906	6.500	2.234	9.750	2.000	43.50	21.00	500.0m	7.312	9.750	33.13	
		1	21.14	9.953	2.235	21.34	57.05	70.55	1.000	55.02	13.81	2.437	16.47	
		2	9.547	3.047	55.02	23.17	- NBD -	13.00	27.00	- NBD -	12.00	29.27	27.84	
		3	54.67	38.61	24.80	3.657	- NBD -	35.00	51.50	86.00	10.56	49.59	22.56	
		4	- P E -	- P E -	- P E -	- P E -	- P E -	- P E -	- P E -	- P E -	- P E -	- P E -	- P E -	
4	11.41	5	17.88	10.16	813.0m	4.875	- NBD -	• NBD •	• NBD •	15.03	44.92	203.0m	32.30	
-	0.40	6	51.02	- NBD -	14.42	25.00	11.50	35.03	28.00	- NBD -	13.41	25.39	0.930	
		7	1.625	12.80	11.78	- NBD -	3.000	81.00	55.50	- NBD -	56.70	8.734	21.14	
		8	31.91	16.47	2.234	2.641	3.000	5.031	37.50	67.00	41.67	25.81	21.95	
		9	5.078	1.625	33.73	60.00	• NBD •	30.50	2.500	- NBD -	4.266	47.75	22.56	
		10	11.17	8.125	19.92	25.20	65.02	10.00	• NBD •	56.50	41.14	43.38	12.39	

[データサマリ]

データファイルをもとに、ブレークダウン時間のデータサマリ、ウェハ マップ、グラフィックウェハマップ、特性グラフ、ワイブルプロット、QBD ヒストグラム、累積度数分布で表示します。

データファイルはCSV形式のASCIIファイルですので、他のWindow sアプリケーションでも容易にデータ解析を行うことができます。

[ウェハマップ]

[グラフィックウェハマップ]

TOA TECHNO

[特性グラフ拡大表示]

[ワイブルプロット]

[累積度数分布]

TDA TECHNO

TOA TECHNO

TZDB測定

設定条件に従いI-V測定を行い、SWEEP測定値をデータファイ ルに保存します。

DataType	тара			
DataFile	WReIDataWTZDBWSAMPLE1202AWSAMPLE1202A		ファイル違択	データサマリ
Lot Id	SAMPLE1202A		ウェハ選択	ウェハマップ
Product ID	TEST MEASUREMENT		チッブ選択	特性グラフ
Fest Table File	SPARK#Cond#Reliability#TZDB#SAMPLE001	000	項目選択	
Probing File	C#SPARK#Cond#Prober#SAMPLE001	007		
Operator	PHILTEC			
File Comment	TEST MEASUREMENT DATA			
Date	2002/12/02 18:22			
Nafer Num	25 25			
Chip Num	6 6			
tem Num	9 9		EXIT	

データファイルをもとに、ブレークダウン電圧のデータサマリ、ウェハ マップ、グラフィックウェハマップ、特性グラフで表示します。

データファイルはCSV形式のASCIIファイルですので、他のWindow sアプリケーションでも容易にデータ解析を行うことができます。

ata I	File	.¥ReID	ata¥TZDB¥S	SAMPLE121	2C#SAMPL	E12120		т	est Table File	.¥SPA	RXVCondVF	eliability¥1	ZDB¥SAM	PLE002	00
ot ID		SAMPL	E1212C				_	P	robing File	C#SP/	ARX#Cond#	Prober¥SA!	MPLE001		00
rodu	ict ID	TEST	MEASUREN	IENT				N	eas Date	2002/	12/12 19:4	1:11			
pera	tor	PHILT	EC							-				_	
In C	omme	Int TEST	MEASUREN	IENT DAT	A									F	ile Out
				_		_									EVIT
ata	Type	Break	down Volta	ige BD i	Field [MV/c	m]									EAT
		Item	TEST001	TEST002	TEST003	TEST004	TEST005	TEST006	TEST007 TE	STOOS	TEST009	EST0010	'EST0011	'EST001:	ESTO
		1	5.150	11.20	2.600	8.100	2.700	7.800	3.600	2.700	25.40	2.725	2.550	2.550	2.7
		2	5.075	10.80	2.500	7.800	3.000	5.800	2.700	3.200	25.30	2.500	2.575	2.650	2.5
-1	[1]	3	5.150	10.60	2.600	7.000	2.500	5.600	3.900	3.500	26.10	2.600	3.000	2.700	2.6
		4	5.775	10.80	3.000	8.400	3.200	6.400	3.600	3.600	26.30	2.525	2.925	2.775	2.1
		5	5.375	10.60	2.600	11.70	2.900	7.800	3.300	3.200	25.30	2.950	2.600	2.800	3.3
		1	5.425	10.20	3.900	7.800	2.600	7.600	3.600	2.500	26.90	2.500	2.500	2.500	3.3
		2	5.225	10.20	2.700	8.400	2.800	7.400	3.900	2.600	25.00	3.175	2.750	2.700	2.6
2	[2]	3	5.400	10.00	3.500	8.700	3.900	5.200	2.600	3.000	25.00	2.525	2.625	2.525	2.5
		- 4	5.025	10.40	2.500	9.000	2.500	5.000	3.100	3.100	25.70	2.500	2.550	2.850	3.1
		5	5.025	10.00	3.900	10.50	3.900	7.800	3.000	3.700	26.00	2.800	2.850	2.550	2.5
		1	5.150	11.40	2.700	9.300	2.900	5.000	2.900	2.900	25.50	2.700	3.300	2.675	2.6
		2	5.175	10.60	2.800	10.20	3.100	5.000	3.400	2.700	27.70	2.650	3.475	3.350	2.9
3	[3]	3	5.000	10.20	3.800	10.50	2.500	7.000	3.500	3.100	25.40	2.500	2.525	2.950	2.5
		4	5.375	10.20	3.700	9.900	2.700	5.800	3.900	3.800	27.60	2.500	2.750	2.625	2.6
		5	5.175	10.80	2.600	9.300	3.400	7.600	3.900	2.700	27.50	2.500	2.625	3.175	2.7
		1	5.125	13.20	2.900	10.20	3.800	5.000	3.900	2.800	25.20	2.525	3.025	2.825	2.6
		2	5.225	11.80	3.900	7.500	3.900	5.600	3.800	3.400	25.60	2.875	2.625	2.725	2.5
-4	[4]	3	5.300	10.00	2.800	9.300	3.700	6.000	2.500	2.700	25.50	2.950	2.600	2.850	2.6
		4	5.725	10.40	3.100	9.300	3.900	7.800	3.200	3.500	26.20	2.550	2.850	2.675	2.6
		6	5.000	10.80	3.900	9.300	3.700	7.600	2.800	2.500	25.00	2.725	2.775	2.600	2.7
		1	5.025	12.00	2.700	7.800	2.600	5.800	3.800	2.500	29.00	2.575	2.525	2.700	2.7
		2	5.200	10.00	3.500	8.100	2.900	7.800	3.200	3.900	25.40	2.500	2.675	2.825	2.5
5	(5)	3	5.475	10.80	3.900	7.800	2.600	5.400	3.700	3.300	25.80	2.575	3.100	2.675	2.5
		4	5.050	11.80	3.700	7.800	3.100	5.000	2.700	2.600	26.00	2.625	2.625	2.925	2.5
		- 5	5.225	11.00	3.900	8.100	3.000	5.800	2.900	2.800	28.10	2.525	2.775	2.525	2.5
100		1	6.426	11.00	2 800	11.70	3 1 0 0	6 200	3 300	2 700	76.10	2 676	2.800	2 0 2 5	2.0

Data File Lot ID	SAMPLE1	TZDBISA 212C	MPLE1212C	WSAMPLE	12120			W	afer 01 tem TE	(001) - ST001	Nafer - 1			
Froduct ID Test Table File Probing File	UNSPARKW CUSPARKW	Cond#Relia #Cond#Pro	bility¥TZDI ber¥SAMPL	BWSAMPL E001	E002	000		Data T	ype B	realdown \ Ireakdown	/oltage Field			Graph Map
Operator Meas Date	PHILTEC 2002/12/1	2 19:41:11	1			007								File Out All
ile Comment	TEST MEA	SUREME	NT DATA										_	EXIT
-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
6	-													
5							6.150							
4	+				-		5,150			-		_		
2														
1			6.776			-	6.160	_		-	6.076			
-1			5.775				5,150	_		-	5.075			
-2														
-3	-				-	-	6 376			-			<u> </u>	
-5	+						0.375			-				
-6														
-7														

[ウェハマップ]

[グラフィックウェハマップ]

TOA TECHNO =

ホットキャリア測定

R Package Hot Carrier Measurement Se

設定条件に従いストレス印加/特性測定を行いデバイスの評価を行います。測定はCパッケージの特性測定と同じものを使用します。

ホットキャリアデータ解析

If a Lange modulus 21 Data Tay FLICtioner Protein Tay FLICtioner Star Tay FLICtioner Star Tay FLICtioner

[データ解析メイン画面]

データファイルをもとに、各パラメータのデータサマリ、ウェハマップ、 グラフィックウェハマップ、特性グラフ、経時変化グラフで表示します。

データファイルはCSV形式のASCIIファイルですので、他のWindow sアプリケーションでも容易にデータ解析を行うことができます。

ata	File	.¥HotCa	rrier¥SAMPLE1	220A¥SAM	PLE1220A]	Test	Table File	.¥Cond¥Re	liability¥H	otCarrier#	SAMPLE001		0
ot ID		SAMPL	E1220A					Prob	ing File	CINSPARK	#Cond#Pro	berWSAMP	LE001		0
rođi	act ID	TEST N	EASUREMEN	т				Meas	s Date	2002/12/2	File Out				
ile C	omme	nt TEST N	EASUREMEN	T DATA										EX	ат
			ltern						ltern01						-
			Bias Step			1.0	000					2.000			
			Parameter	Vth1	Id	Ommax	20mmax	Vth2	Spara	Vth1	ld	Gmmax	20mmax	Vth2	
No.	Wno	ChioNo.	Time \ Unit	[V]	[A]	[S]	[V]	[V]	[Videc]	[V]	[A]	[8]	[V]	[V]	1
			0.0	1.068	564.2u	1.224m	4.700	-1.614	117.4m	1.064	658.3u	2.857m	4.100	-11.54m	1
			10.0	1.029	612.2u	1.224m	4.650	-1.644	104.8m	1.024	714.3u	2.857m	4.100	-91.70m	1
			20.0	1.111	518.2u	1.224m	4.750	-1.585	129.0m	1.108	604.6u	2.857m	4.800	-1.585	1
			30.0	1.068	564.2u	1.224m	4.700	-1.614	117.4m	1.064	658.3u	2.857m	4.100	-11.54m	1
			40.0	1.002	661.2u	1.224m	4.700	-1.775	130.3m	992.4m	772.6u	2.857m	4.100	-171.9m	9
			50.0	1.106	529.5U	1.224m	4.800	- C E -	118.6m	1.104	617.8u	2.857m	4.850	- C E -	1
			60.0	1.152	485.0u	1.224m	4.900	- C E -	130.3m	1.142	565.8u	2.857m	4.850	+ C E +	9
		1	70.0	1.029	612.2u	1.224m	4.650	-1.644	104.8m	1.024	714.3u	2.857m	4.100	-91.70m	1
			80.0	1.118	507.0u	1.224m	4.750	-1.564	117,4m	1.114	591.5U	2.857m	4.100	88.67m	1
			90.0	1.161	463.4U	1.224m	4.800	- C E -	129.8m	1.158	540.6u	2.857m	4.100	168.9m	-1
1	[21]		100.0	1.161	463.40	1.224m	4.800	- CE-	129.8m	1.158	540.60	2.85/m	4.100	168.9m	-
			110.0	1.150	4/4.10	1.224m	4.950	- UE-	118.6m	1,154	553,10	2.857m	3.550	702.2m	-
			120.0	1,111	518.20 600.6u	1.224m	4,750	-1.585	129.8m	1.108	647.00	2.857m	4.800	-1.585	-
			140.0	1.002	529.5U	1.224m	4.000	4.775	120.2m	002.4m	772.6.	2.057m	4.000	-171.0m	
			160.0	1.002	624.60	1.2240	4,760	-1.765	117.4m	1.014	772.00	2.057m	2,400	602.4m	- 1
			0.0	1.079	552 Bit	1.224m	4 300	-1 194	104.8m	1.074	644 60	2.007m	4.850	-1 194	-
			10.0	1.006	649.00	1.224m	4 650	-1.705	118.6m	1.004	757.81	2.857m	4.850	-1.705	-
		2	20.0	1 1 7 9	442.30	1.224m	4.950	- CE-	104.8m	1.174	516.1u	2.857m	4.850	- CE-	1
		-	30.0	1.152	485.0u	1.224m	4.900	-CE-	130.3m	1.142	565.8u	2.857m	4.850	- CE-	9
			40.0	1.102	541.0u	1.224m	4.800	-CE-	130.3m	1.092	631.1u	2.857m	4.850	·CE-	9
•			10.0												

[データサマリ]

[ウェハマップ]

Rpackage

[グラフィックウェハマップ]

[経時変化グラフ]

TOA TECHNO

チャージポンプ測定

矩形波法でチャージポンプ測定を行います。

TOA TECHNO

TDA TECHNO =

_ 🗆 🗡

チャージポンプデータ解析

DataType	ChargePump	
DataFile	WChargePumpWSAMPLE0107BWSAMPLE0107B ファイル道訳	l
Lot Id	SAMPLE0107B ウェルマップ	
Product ID	TEST MEASUREMENT チップ選択 特性グラフ	
Test Table File	WCond#ReliabilityWChargePumpWSAMPLE001 007 項目避殺	1
Probing File	CVSPARK#CondProber#SAMPLE001 007	
Operator	PHILTEC	
File Comment	TEST MEASUREMENT DATA	
Date	2003/01/07 14:39	
Wafer Num	7 7	
Chip Num	5 5	
Item Num	4 4 EXT	

データファイルをもとに、各パラメータのデータサマリ、ウェハマップ、 グラフィックウェハマップ、特性グラフ表示を行います。

データファイルはCSV形式のASCIIファイルですので、他のWindow sアプリケーションでも容易にデータ解析を行うことができます。

atal	File	WChare	cePump#SA	MPLE01070	#SAMPLEC	107C		Te	st Table File	WCond9	Reliability¥	ChargePur	ID#SAMPLE	002	
ot le		SAMPL	E0107C				_	Pr	obing File	CWSPA	RX#Cond#Pr	ober¥SAM	PLE001A		-16
rod	uct ID	TEST	MEASURE	MENT				Me	as Date	2003/0	1/07 18:59				
ner	ator	PHILT	EC	_						-		_			
IA (amme	TEST	MEASURE!	MENT DAT	Å				_					E F	ile Ou
	Jonnine														DUT
ata	Туре	le	p	Nss											EDUI
		Item	Device01	Device02	Device03	Device04	Device05	Device06	Device07	Device08	Device09	Device10	Device11	Device12	Devi
		1	106.7n	142.1n	116.2n	305.0n	82.27n	81.24n	71.05n	77.42n	73.37n	72.61n	83.16n	70.28n	55
		2	97.46n	126.1n	133.8n	286.9n	71.79n	69.82n	71.43n	78.54n	83.81n	66.01n	70.81n	64.45n	- 55
	[3	96.90n	138.3n	140.7n	291.6n	79.10n	80.54n	80.50n	56.51n	75.22n	81.13n	66.53n	79.53n	63
		4	95.06r	143.0n	129.8n	286.6n	78.71n	68.71n	65.28n	77.71n	80.61n	74.60n	80.95n	70.09n	71
	[5	103.5n	129.8n	131.1n	279.8n	80.79n	63.78n	70.95n	73.10n	79.83n	59.23n	83.13n	82.31n	81
		6	103.5n	129.8n	131.1n	279.8n	80.79h	63.78n	70.95n	73.10n	79.83h	59.23n	83.13n	82.31n	81
1	[11]	7	96.79n	140.5n	134.0n	298.1n	70.03n	81.98n	71.12n	83.19n	70.41n	69.05n	69.22n	69.33n	- 74
		8	91.18n	143.9n	136.6n	285.6n	77.68n	71.13n	78.71n	76.62n	75.88n	79.53n	63.01n	64.43n	67
	[9	95.78n	143.6n	120.0n	282.9n	78.18n	79.82n	82.58n	59.05n	80.05n	75.43n	61.78n	73.53n	70
		10	103.6n	135.5n	140.1n	301.9n	68.34n	59.35n	82.44n	61.27n	81.02n	82.02n	77.36n	82.23h	80
		11	95.94n	141.0n	134.7n	207.2n	76.52n	81.14n	73.09n	80.69n	74.69n	71.15n	59.13n	80.29n	- 56
		12	98.64n	135.9n	128.2n	296.2n	83.58n	71.49n	72.01n	64.00n	68.81n	70.52n	78.44n	69.77n	71
_		13	97.96n	135.1n	119.7n	269.7n	83.68h	81.12n	70.24n	62.98n	83.85n	61.73n	79.78n	71.85n	80
		1	101.1n	135.9n	139.1n	302.8n	80.62n	81.90n	73.72n	80.94n	72.32n	80.39n	58.87n	70.24n	66
		2	101.5r	141.3n	134.7n	303.5n	81.49n	65.34n	59.77n	69.00n	70.33n	67.82n	68.77n	83.41n	74
		3	105.0n	142.2n	131.5n	297.7n	75.41n	72.69n	71.66n	82.45n	81.71n	78.56n	57.96n	80.66n	80
		4	106.0n	129.6n	126.4n	302.1n	76.87n	77.23n	72.03n	81.05n	80.57n	81.08n	79.12n	81.60n	73
		5	96.75n	141.9n	136.9n	302.5n	71.05n	77.17n	59.28n	83.33n	83.00n	83.58n	67.88n	73.87n	81
2	11.20	6	96.75n	141.9n	136.9n	302.5n	71.05n	77.17n	59.28n	83.33n	83.00n	83.58n	67.88n	73.87n	81
4	[14]	1	87.22n	138.0n	126.4n	277.6n	77.56n	81.02n	77.50n	63.21n	79.39n	73.41n	72.46n	70.21n	82
		8	107.76	143.0n	140.8n	296.9n	79.28h	81.22n	76.87n	64.62h	76.76h	83.56n	79.96n	81.04n	71
	-	9	95.160	140.1n	123.6h	300.9n	76.96n	/1.40n	07.24n	83.99h	78.61n	83.11n	69.13h	82.22h	76
	-	10	95.100	1 131.2n	139.8h	262.9n	82.86h	78.50n	70.33h	78.96h	73.460	/1.43n	68.96h	65.52h	/9
	-	11	87.580	143.0n	143.4n	302.5n	70.63h	82.19h	82.94n	81.17n	78.550	65.63n	82.91n	81.30n	75
	-	12	82.340	143.3n	138.60	295.4n	73.220	07.44h	80.94n	82.30h	72.89h	81.06n	72.68h	77.330	74
		13		1411.80	1.000	ant en	MA	87180	- M (40)	er en	8.(580	cit wan	81.050	CT allo	- 10

WChargePump#SAMPLE0108A#SAMPLE0108A Data File Wafer 01 [001] Wafer - 1 Lot ID SAMPLE0108A Item Device01 TEST MEASUREMENT Product ID Test Table File WCond#Reliability#ChargePump#SAMPLE003 Data Type kp 001 Graph Map Probing File C#SPARK#Cond#Prober#SAMPLE002 File Out PHILTEC Operator File Out All 2003/01/08 09:17:40 Meas Date File Comment TEST MEASUREMENT DAT EXIT 9 10 6 8 4 5 [ウェハマップ]

🚰 Analysis Wafer Map (Charge Pump)

TOA TECHNO =

[グラフィックウェハマップ]

Analysis Sweep Data Map (Charge Pump) LVSAMPLE0108AVSAMPLE0108A Û +1 +2 +3 +4 +5 +6 +9 +9 +10 Data File Lot ID SAMPLE0108A TEST MEASUREMENT Product ID Test Table File WReliability#ChargePump#SAMPLE003 001 Probing File WSPARKWCond/Prober/VSAMPLE002 PHILTEC Operator M Meas Date 2003/01/08 09:17:40 Wafer 01 [001] - Wafer - 1 Item Device01 1 [XAxis Scale] [YAxis Scale] Type LIN LOG Min 0 Max 200.0n Type LIN LOG Min 0 Max 15.00 Pitch 5.000 Pitch 50.00n -6 Label Its Label Base V Redraw [View Mode] Select Chip / All Wafers -10 EXIT

[特性グラフ]

エレクトロマイグレーション測定

5種のストレス/測定パターンの測定を行います。

ブレークダウン値とともにR-Tデータもファイルとして保存します。

TDA TECHNO

Rpackage

TOA TECHNO

エレクトロマイグレーションストレス/測定パターン

定電圧ストレス/ストレス電圧測定

定電流ストレス/ストレス電流測定

定電圧ストレス/設定電圧測定

定電流ストレス/設定電流測定

パルスストレス/設定電圧測定

エレクトロマイグレーションデータ解析

Rpackage

Data Type	ElectroMigration	
Data File	WElectroMigrationWSAMPLE002WSAMPLE002 ファイル激化 データサマリ	
Lot ID	SAMPLE002 ウェハマップ	
Product ID	TEST MEASUREMENT デップ違択 認時変化化ラフ	
Test Table File	WElectroMigrationWSAMPLE002 001 項目選択	
Probing File	CWSPARKWCond#ProberWSAMPLE006 001	
Operator	PHILTEC Of JUDION	
File Comment	TEST MEASUREMENT DATA	
Date	2003/02/27 16:45	
Wafer Num	15 15	
Chip Num	13 13	
tem Num	4 4	

[データ解析メイン画面]

ta File	.¥Elect	o Migration N	SAMPLEO	2VSAMPLE	002		Т	est Table F	ile VElec	troMigration	#SAMPLE0	102		0
ID	SAMPL	E002					Р	robing File	CINSP	ARKNCondN	Prober¥SA	MPLE006		0
duct ID	TEST	(EASURE)	IENT				м	eas Date	2003/	02/27 16:4	5:06			
erator	PHILTE	ić.						040 0410					F	ile Ou
e Comme	ITEST N	(EASUREN	IENT DAT	A				_						EXIT
														2501
	Item		Em	001			Em	002			Em	003		
	Device	Device01	Device02	Device03	Device04	Device01	Device02	Device03	Device04	Device01	Device02	Device03	Device04	Devic
	1	7.110	27.14	8.131	7.110	2.244	50.00	50.00	50.00	50.00	19.08	23.91	29.60	1.
	2	4.506	12.86	15.13	4.756	21.93	2.433	7.961	50.00	50.00	50.00	11.84	15.54	50
	3	30.00	19.14	16.61	15.10	16.62	6.469	50.00	9.213	7.010	9.374	32.07	35.71	8.
	4	29.53	1.292	22.49	30.00	50.00	45.83	50.00	27.29	44.47	32.55	50.00	11.91	5.
	5	751.0m	20.20	1.132	30.00	16.54	8.612	48.00	14.88	35.56	33.47	23.38	16.33	- 50
	6	751.0m	20.20	1.132	30.00	16.54	8.612	48.00	14.88	35.56	33.47	23.38	16.33	50
1 [11]	1	17.09	27.38	9.373	14.06	11.55	1.463	50.00	551.0m	11.38	48.71	20.72	14.66	35
	8	130.0m	9.083	19.66	30.00	16.10	17.01	20.71	50.00	561.0m	50.00	5.869	50.00	8.
	9	1.643	7.551	21.29	11.32	33.11	23.07	50.00	22.52	38.80	3.164	45.61	28.02	17
	10	2.965	9.874	30.00	27.98	44.03	28.82	50.00	50.00	23.47	18.66	21.61	922.0m	15
	11	2.704	30.00	10.99	30.00	50.00	34.68	12.30	27.47	6.029	2.975	371.0m	4.086	- 14
	12	10.13	4.977	120.0m	4.856	4.025	18.82	50.00	46.89	28.88	50.00	10.55	50.00	3.
	13	16.20	30.00	30.00	1.512	14.27	3.906	50.00	15.55	3.125	44.02	8.843	5.348	2.
	1	12.10	3.335	30.00	1.132	18.02	50.00	50.00	38,61	11.57	7.330	28.42	21.93	41
		3,334	13.40	2.074	20.49	10.04	0.278	34.28	0.610	0.040	23.00	24.60	48.43	- 20
	J	20.00	0.029	25.22	14.05	10.02	50.00	34.03	45.00	4 108	912.0m	3175	27.74	24
		20.30	19.60	3 445	16.74	11.061	641.0m	4 827	721.0m	50.00	60.00	50.00	24.76	11
2 [12]	6	29.36	19.60	3.445	15.74	11.06	541.0m	4.827	721.0m	50.00	50.00	50.00	24.75	11
	7	130.0m	30.00	6.810	30.00	4.296	22.01	2.804	17.06	19.45	36.01	29.00	42.52	50
	8	13.93	250.0m	2.984	4.558	18.66	50.00	13.27	22.32	24.26	50.00	35.40	32.27	50
	9	6.970	8.482	21.93	6.850	20.12	50.00	31.92	22.32	731.0m	50.00	10.49	7.912	2.
	10	30.00	16.22	25.21	30.00	360.0m	41.10	4.066	50.00	41.61	26.30	30.54	13.63	35
														10

[データサマリ]

データファイルをもとに、データサマリ、ウェハマップ、グラフィックウェ ハマップ、特性グラフ、累積度数分布、ワイブルプロットで表示します。

データファイルはCSV形式のASCIIファイルですので、他のWindow sアプリケーションでも容易にデータ解析を行うことができます。

[ウェハマップ]

TOA TECHNO 🚽

[グラフィックウェハマップ]

[累積度数分布]

[特性グラフ]

[ワイブルプロット]

TDA TECHNO =

プログラム仕様

TDDB測定 ストレスタイプ 定電圧ストレス : ストレス電圧測定、設定電圧測定 定電流ストレス : ストレス電流測定、設定電流測定 ステップ電圧ストレス : ストレス電圧測定、設定電流測定 ステップ電流ストレス : ストレス電流測定、設定電流測定 パルスストレス : 設定電圧測定 ストレス時間設定 LIN : 1~5,000,000sec LOG : 3, 4, 5分割/桁 最大ステップ数 : 1001 ブレークダウン判定方法 Upper/Lower Delta Delta% ユーザー定義

TZDB測定 電圧スイープ測定、電流スイープ測定 スイープステップ数 : 1001 ブレークダウン判定方法 Upper/Lower ホットキャリア測定
 ストレスタイプ
 定電圧ストレス
 定電流ストレス
 ストレス時間設定
 LIN : 1~5,000,000sec
 LOG : 3,4,5分割/桁
 最大ステップ数 : 1000
 特性プログラム (Cpackageの特性プログラムと同等)
 組み込みプログラム数 : 100
 ノード数 : 6
 パラメータ : 30
 測定条件値数 : 20
 テストテーブル (Cpackageのテストテーブルと同等)
 組み込みItem数 : 1000

チャージポンプ測定 ^{矩形波法}

エレクトロマイグレーション測定

ストレスタイプ
 定電圧ストレス : ストレス電圧測定、設定電圧測定
 定電流ストレス : ストレス電流測定、設定電圧測定
 ストレス時間設定
 LIN : 1~5,000,000sec
 LOG : 3,4,5分割/桁
 最大ステップ数 : 1001
 ブレークダウン判定方法
 Upper/Lower
 Delta
 Delta%
 ユーザー定義

TDA TECHNO

コンピュータ OS : Windows2000 SP3以上, WindowsXPSP2 CPU : PentiumⅢ 500MHz以上 メモリ : 256M以上 ハードディスク空き容量 : 100M以上 ディスプレイ : SXGA(1240X1024)以上

対応測定器

Agilent	4155/56 B/C
Agilent	4 1 4 2 B
Agilent	E 5 2 7 0 A
Agilent	E 5 2 7 0 B
Agilent	B1500A
Agilent	E5250A マトリクスカード(E5252A*1~4)
Agilent	B 2 2 0 0 A
Agilent	4 2 8 4 A
Agilent	4 2 9 4 A
Agilent	4980A
Agilent	8 1 1 1 0 A

対応プローバ

東京エレクトロン	:	P-8, P-12, 19S, 20S, 78S
東京精密	:	UF200, UF3000, A-PM-90A, A-PM-60A
カスケード・マイクロテック	:	Nucleus
ズース・マイクロテック	:	Prober Bench
ベクターセミコン	:	A X – 2 0 0 0
その他		